Digitalimagingdevice driver download. Thank you very much for your interest in the GERDES Aktiengesellschaft. As a dynamic, technology oriented and steadily growing company we are always looking forward to unsolicited applications, too. If the GERDES product portfolio represents an exciting challenge to you, your know-how, your network etc., then send us your application and let us. Gerdes said it's up to engineers to 'bound the problem' for drivers. Gerdes also suggested that this nascent ethics-based programming of self. Download digibras driver.
Drivers Gerdes Aktiengesellschaft Network Login
- Gaffar, A., Monjezi Kouchak, S.: Quantitative driving safety assessment using interaction design benchmarking. In: IEEE Advanced and Trusted Computing (ATC 2017), San Francisco Bay Area, USA, 4–8 August 2017 (2017)Google Scholar
- NHTSA, USDOT Releases 2016 Fatal Traffic Crash Data. https://www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data. Accessed 3 Mar 2018
- IIHS HDLI: Insurance Institute for Highway Safety Highway Lost Data Institute, Teenagers Driving carries extra risk for them. https://www.iihs.org/iihs/topics/t/teenagers/fatalityfacts/teenagers. Accessed 10 Feb
- AAA, Distraction and Teen Crashes: Even Worse than We Thought. https://newsroom.aaa.com/2015/03/distraction-teen-crashes-even-worse-thought/. Accessed 5 Jan
- Gaffar, A., Monjezi Kouchak, S.: Using artificial intelligence to automatically customize modern car infotainment systems. In: Proceedings on the International Conference on Artificial Intelligence (ICAI), pp. 151–156 (2016)Google Scholar
- Geronimo, D., Lopez, A., Sappa, D., Graf, T.: Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1239–1258 (2010)CrossRefGoogle Scholar
- Paul, A., Chauhan, R., Srivastava, R., Baruah, M.: Advanced driver assistance systems, SAE Technical Paper 2016-28-0223 (2016). https://doi.org/10.4271/2016-28-0223
- Monjezi Kouchak, S., Gaffar, A.: Determinism in future cars: why autonomous trucks are easier to design. In: IEEE Advanced and Trusted Computing (ATC 2017), San Francisco Bay Area, USA, 4–8 August 2017 (2017). https://doi.org/10.1109/uic-atc.2017.8397598
- Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.): Autonomous Driving: Technical, Legal and Social Aspects. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48847-8. ISBN 978-3662488454CrossRefGoogle Scholar
- Gaffar, A., Monjezi Kouchak, S.: Undesign: future consideration on end-of-life of driver cars. In: IEEE Advanced and Trusted Computing (ATC 2017), San Francisco Bay Area, USA, 4–8 August 2017 (2017)Google Scholar
- Lee, J.: Dynamics of driver distraction: the process of engaging and disengaging. Association for Advancement of Automotive Medicine. PMC4001670, pp. 24–32 (2014)Google Scholar
- Fuller, R.: Towards a general theory of driver behavior. Accid. Anal. Prev. 37(3), 461–472 (2005)CrossRefGoogle Scholar
- Gaffar, A., Monjezi Kouchak, S.: Minimalist design: an optimized solution for intelligent interactive infotainment systems. In: IEEE IntelliSys, the International Conference on Intelligent Systems and Artificial Intelligence, London, 7th–8th September 2017 (2017)Google Scholar
- Cellario, M.: Human-centered intelligent vehicles: toward multimodal interface integration. IEEE Intell. Syst. 16(4), 78–81 (2001)CrossRefGoogle Scholar
- Gaffar, A., Monjezi Kouchak, S.: Using simplified grammar for voice commands to decrease driver distraction. In: The 14th International Conference on Embedded System, pp. 23–28 (2016)Google Scholar
- Adam, G., Josh, P.: Deep Learning. O’Reilly (2017)Google Scholar
- Jürgen, S.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–118 (2015)CrossRefGoogle Scholar
- Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2. ISBN 978-3642247965CrossRefzbMATHGoogle Scholar
- Stuart, J., Peter, N.: Artificial Intelligence a Modern Approach. Prentice Hall, Upper Saddle River (2010)zbMATHGoogle Scholar
- Bishop, C.: Pattern Recognition and Machine Learning, 1st edn. Springer, New York (2006). ISBN 0-387-31073-8zbMATHGoogle Scholar
- Li, J., Mei, X., Prokhorov, D., Tao, D.: Deep neural network for structural prediction and lane detection in traffic Scene. IEEE Trans. Neural Netw. Learn. Syst. 28, 14 (2017)Google Scholar
- Koesdwiady, A., Bedawi, S.M., Ou, C., Karray, F.: End-to-end deep learning for driver distraction recognition. In: Karray, F., Campilho, A., Cheriet, F. (eds.) ICIAR 2017. LNCS, vol. 10317, pp. 11–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59876-5_2CrossRefGoogle Scholar
- Monjezi Kouchak, S., Gaffar, A.: Non-intrusive distraction pattern detection using behavior triangulation method. In: International Conference on Computational Science and Computational Intelligence (CSCI), USA, 14th–16th December 2017 (2017). https://doi.org/10.1109/csci.2017.140